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An approximate projection method for incompressible �ow
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SUMMARY

This paper presents an approximate projection method for incompressible �ows. This method is derived
from Galerkin orthogonality conditions using equal-order piecewise linear elements for both velocity and
pressure, hereafter Q1Q1. By combining an approximate projection for the velocities with a variational
discretization of the continuum pressure Poisson equation, one eliminates the need to �lter either the
velocity or pressure �elds as is often needed with equal-order element formulations. This variational
approach extends to multiple types of elements; examples and results for triangular and quadrilateral
elements are provided. This method is related to the method of Almgren et al. (SIAM J. Sci. Comput.
2000; 22:1139–1159) and the PISO method of Issa (J. Comput. Phys. 1985; 62:40–65). These methods
use a combination of two elliptic solves, one to reduce the divergence of the velocities and another to
approximate the pressure Poisson equation. Both Q1Q1 and the method of Almgren et al. solve the
second Poisson equation with a weak error tolerance to achieve more computational e�ciency.

A Fourier analysis of Q1Q1 shows that a consistent mass matrix has a positive e�ect on both
accuracy and mass conservation. A numerical comparison with the widely used Q1Q0 (piecewise linear
velocities, piecewise constant pressures) on a periodic test case with an analytic solution veri�es this
analysis. Q1Q1 is shown to have comparable accuracy as Q1Q0 and good agreement with experiment
for �ow over an isolated cubic obstacle and dispersion of a point source in its wake. Copyright ? 2002
John Wiley & Sons, Ltd.

1. INTRODUCTION

Projection methods are popular techniques for simulating incompressible or quasi-incompress-
ible �ow. This is due to their simple description of the �ow in terms of primitive variables
(such as velocities, pressures and temperatures), their algorithmic simplicity in that no vari-
able transformations are required and no sub-cycling of the pressure (such as with arti�cial
compressible methods) is needed in time. Although they require the solution of an elliptic
Poisson equation, they are computationally e�cient due to recent advances in linear algebra,
such as the incorporation of advanced multigrid methods. References on recent developments
in projection methods can be found in Almgren et al. [1] and Gresho and Chan [2].
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The equations modelled in this study involve evolution equations for momentum and an
advected scalar subject to an incompressibility constraint.
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In the above equations, turbulent stress u′iu′j and scalar �ux u′j c′ are parameterized (when
turbulent e�ects are present) via an appropriate turbulence model and a constant viscosity K
for velocity and Kc for the scalar are used. The continuum pressure Poisson equation (PPE) is
derived by combining Equations (1) and (2) to obtain an equation for a pressure potential, p:
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The term projection method arises from the fact that a velocity �eld can be decomposed into a
divergence free �eld and a gradient of a scalar. Methods which solve for such a scalar, often
by inverting a Poisson problem and subtracting the solution’s gradient o� of the original
velocity �eld, are called projection methods. Many of the various projection methods are
di�erentiated via the manner in which they discretize and combine the temporal discretization
of Equation (1) with the spatial discretization of Equations (2) and (4). An analysis of �ve
such methods is presented in Almgren et al. [1], hereafter referred to as ABC. Our method is
an extension of their �fth method, P5. Both methods discretize the above equations in such
a way that both Equations (2) and (4) are numerically approximated.
This paper �rst describes and motivates the ideas behind this method. Its ideas are shown

to be applicable to triangles and quadrilaterals in 2D and tetrahedrons and hexahedrons in
3D. This is followed by a results section where tests are performed on both a simple periodic
test case where an analytic solution is known and a challenging test case: the dispersion of a
tracer released behind a cube embedded in a turbulent �ow �eld. The test cases are also used
to compare this method with a more traditional and widely used staggered grid approach. We
conclude with a summary and interpretation of the results.

2. THEORY

2.1. The approximate projection
Our numerical method employs the linearized implicit approach of Gresho and Chan [2],
where the momentum and scalar equations are discretized as

M
(
un+1 − un

�t

)
+ (K + N (un))(�un+1 + (1− �)un) =−Gpn−1=2 (5)

M
(
cn+1 − cn

�t

)
+ (K + N (un))(�cn+1 + (1− �)cn) = 0 (6)
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APPROXIMATE PROJECTION METHOD FOR INCOMPRESSIBLE FLOW 1305

In this formulation, for simplicity only Dirichlet boundary conditions are being considered.
Additional boundary conditions can be handled by adding additional terms to the RHS of both
equations and do not complicate the following analysis. Here M;K;N and G are the mass, dif-
fusion, advection and pressure gradient matrices and � is a time-stepping parameter (06�61).
Each of these matrices is sparse and is obtained from Galerkin’s method of weighted residuals
using piecewise linear basis functions (hereafter denoted as �i) de�ned on either triangles or
quadrilaterals in 2D and tetrahedrons or hexahedrons in 3D with the property �i(xj)= �ij. In
a later step, the �rst-order error of using pn−1=2 is corrected by a projection. The mass matrix
can also be ‘lumped’ by adding all o�-diagonal terms onto the diagonal. This mass matrix is
denoted by ML and results in a completely explicit set of equations if �=0.
We seek to improve on Gresho and Chan’s approach (hereafter referred to as Q1Q0 with

respect to the order of elements used for velocity and pressure) which uses a piecewise
constant basis function de�ned on elements for the pressure ( ) and integrates by parts to
yield the pressure gradient matrix.

Gk
ij=−

∫
@�i

@xk
 j dA (7)

where �i is the trial function. Conservation of mass is expressed via

Dk
jiu

k
j =0 (8)

For Q1Q0, this divergence matrix is the transpose of the pressure gradient matrix, GT=D.
Q1Q0 with lumped mass, M=ML, uses an exact projection where mass conservation is al-
ways discretely preserved, i.e. Dun+1 =0. The Q1Q0 exact projection is found by combining
Equations (5) and (8) to get a diagnostic equation for the pressure that requires inverting a
discrete pressure Poisson matrix GTM−1

L G every timestep. This matrix is sparse and easy to
construct. Unfortunately, it is ill-conditioned in that there exist ‘checkerboard’ modes in the
velocities and=or the pressure �eld [3, 4]. Good performance can be achieved by ‘stabilizing’
this matrix with smoothers or other �lters (see References [5, 6] for a review of this topic).
Unfortunately, this often comes at the price of accuracy in the solution and at least a partial
loss of the discrete mass conservation property.
In our equal-order approach (hereafter referred to as Q1Q1), we discretize the pressure

gradient term directly to get

Gk
ij=

∫
�i

@�j

@xk
dA (9)

and have an analogous expression for conservation of mass

Dk
ij=

∫
�i

@�j

@xk
dA (10)

However, mass conservation via our Q1Q1 approach is a weak one and is only approximately
enforced, and hence the name of approximate projection method. The Q1Q0 exact projection
satis�es a discrete version of both Equations (5) and (8). However for Q1Q1, this is not true
and if one desires to solve only one elliptic equation, one must choose either to project u for
mass conservation or project the acceleration of u to approximate the PPE. This results in
numerical di�culties, since errors are observed in the pressure �eld if the pressure Poisson
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equation is solely de�ned to minimize the divergence of the velocities. Similarly, the velocities
su�er, if one derives the pressure Poisson equation solely from the PPE. Our Q1Q1 approach
solves this problem through the use of two Poisson solves which interpret both the PPE
and conservation of mass in a variational manner. Since the Poisson operator is derived by
a well-conditioned operator, Q1Q1 eliminates the need for numerical �lters to improve the
performance of numerical linear system solvers.
Another improvement of Q1Q1 is the use of midpoint in time values for the advection

term, N (un+1=2). This removes a �rst-order temporal error in the discretization and will later
be seen to improve the results. Unfortunately, this improvement results in a cost increase,
due to the fact that one must �rst compute a timestep as a predictor to obtain un+1=2. This
improvement is worthwhile in cases where the data are su�ciently smooth and there are no
other �rst-order errors.
Our method seeks to avoid the above-mentioned problems with either the velocity or pres-

sure by using two projection steps. First we invert a version of Equation (5) which uses the
previous value of the pressure at tn−1=2

M
(
u∗ − un

�t

)
+ (K + N (un))(�u∗ + (1− �)un)=−Gpn−1=2 (11)

If we are computing the very �rst timestep, the value of p−1=2 can be found by inverting:

D((K + N (u0))u0)=Lp−1=2 (12)

Then in the �rst projection step, we numerically project u∗ which involves solving for an
intermediate pressure �= p̃− pn−1=2 via

L�=Du∗=�t (13)

where Lij=
∫
(@�i=@xk)(@�j=@xk) dA is the standard �nite element Laplacian and then applying

its pressure gradient to the velocities via

M
(
un+1 − u∗

�t

)
=−G� (14)

For the case, where N (un+1=2) is desired, one repeats Equations (11)–(14) using N (un+1=2)
where un+1=2 = (un + un+1)=2 instead of N (un) in Equation (11). After obtaining un+1, we
compute a �nal pressure, pn+1=2, which seeks to force the discrete pressure to adhere to
Equation (4),

Lpn+1=2 =DM−1Hn+1=2 (15)

where Hn+1=2 =−(K + N (un+1=2))(�u∗ + (1 − �)un). Here we use an important observation
from ABC: Since p̃=�+pn−1=2 is in practice very close to the desired pn+1=2, one can solve
this equation iteratively using p̃ as a �rst guess and with a much more relaxed tolerance
than the previous elliptic solve. Typically, we use a relative residual of 1:e − 8 for the �rst
projection and 1:e − 2 for the second. Since L is much better conditioned than GTM−1

L G,
the overall linear algebra cost is lower and often one can use methods such as multigrid
(see for instance, Reference [7]) that are often ine�ective for the case of non-stabilized
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APPROXIMATE PROJECTION METHOD FOR INCOMPRESSIBLE FLOW 1307

GTM−1
L G. An important practical extension of this approach is that it is not limited to a

particular type of element. The following analysis of the e�ectiveness of the projection is
done for both triangular piecewise-linear (referred to as P1P1) and the quadrilateral bilinear
Q1Q1 elements.
An analysis of the performance of the approximate projection in damping divergent modes

follows. First, the exact projection (GTun+1 =0) for Q1Q0 can be summarized via the
following recurrence relation:

un+1=un +�tM−1
L (Hn+1=2 −Gpn+1=2)

Gpn+1=2=G(GTM−1
L G)−1GTM−1

L Hn+1=2
(16)

If we de�ne the projection operator, PL= I −M−1
L G(GTM−1

L G)−1GT, this can be summed to
express un in terms of u0 and the forcings Hi−1=2:

un+1=u0 + �t
n∑

i=0
PLM−1

L H i+1=2

Gpn+1=2=ML(I − PL)M−1
L Hn+1=2

(17)

The fact that the forcing Hn+1=2 was projected rather than un+1 is immaterial for the Q1Q0
exact projection. We can generalize this to arbitrary, D, G, and M matrices by using the more
general exact projection operator P= I −M−1G(DM−1G)−1D. This operator has the property
that if u=Pũ, then Du=0; P projects ũ to a divergence free sub-space.
An approximate projection that is directly motivated by this form of Q1Q0, would be to

de�ne the pressure gradient via

Gpn+1=2 =GL−1DM−1Hn+1=2 (18)

which results in the method

un+1= u0 + �t
n∑

i=0
P̃M−1Hi+1=2 (19)

Gpn+1=2 =M (I − P̃)M−1Hn+1=2 (20)

P̃= I −M−1GL−1D (21)

Note the presence of the mass matrix M in P̃. It will be shown to have an important ef-
fect on the performance of the projection. Unfortunately for P̃, there are non-zero divergent
components of M−1Hi−1=2 which are not completely eliminated by the projection that may
accumulate resulting in a degraded velocity �eld. This is the fourth method presented in ABC
and was shown to have pathological behaviour.
Our approximate projection method, like the �fth method in ABC, avoids this accumulation

by combining its �rst projection step which can be expressed as

un+1 = u∗ −M−1GL−1Du∗= P̃u∗ (22)
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with a second projection step of the forcing term Hn+1=2 to yield the recurrence relations:

un+1 = P̃(un +�tM−1Hn+1=2 −�tM−1Gpn−1=2) (23)

Gpn+1=2 =M (I − P̃)M−1Hn+1=2 (24)

The expression for Gpn+1=2 is the same as Equation (20) for the pathological projection
whereas the projection operator is continually applied to u to force it towards a divergence
free state. This is shown by the summed recurrence relationship for un

un= P̃n(u0 −�tM−1Gp−1=2) + �tP̃M−1Hn+1=2

+�t
n∑

i=1
P̃ i(2P̃ − I)M−1Hn−i+1=2 (25)

This indicates that the �nal velocity �eld is the sum of an initial condition and forcing terms
that have been processed numerous times via the P̃ operator. As long as this operator damps
divergent modes, mass conservation will be maintained. The Fourier analysis in the next
subsection veri�es this damping property.

2.2. Fourier analysis of the approximate projection

One estimate of the performance of this approximate projection method can be determined by
examining the e�ect of computing the projection of the gradient operator applied to a Fourier
component of an arbitrary scalar  . Since for periodic problems, the Fourier components are
eigenvectors of G;D;M and L, one can easily determine the damping applied to each Fourier
component. The behaviour for both the exact projection, P= I − M−1G(DM−1G)−1D, and
the approximate projection, P̃= I − M−1GL−1D can be found simply by substituting in the
appropriate relationship for each matrix. For the mass and Laplacian matrices, this relationship
is given by

Mz=�Mz

Lz=�Lz
(26)

where �L and �M are the eigenvalues of the Laplacian and Mass operators and z is the Fourier
component. For the gradient operator, one uses the relationship:

Gz=

[
�x

�y

]
z (27)

where �x and �y are respectively the Fourier eigenvalues of the x and y discrete deriva-
tives. These same derivative eigenvalues are also used for the divergence operator. The
result of this Fourier analysis is that the projection operators can be expressed in matrix
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notation as

P=
1

�2x + �2y

[
�2y −�x�y

−�x�y �2x

]
(28)

P̃=
1

�L�M

[
�L�M − �2x −�x�y

−�x�y �L�M − �2y

]
(29)

Since both of these matrices are symmetric, the eigenvectors are orthogonal and repeated
application of each projection can be summarized as

Pnu= �n
1
u · x1
x1 · x1 x1 + �n

2
u · x2
x2 · x2 x2 (30)

where x1= [�y;−�x]T and x2= [�x; �y]T are the orthogonal eigenvectors corresponding to the
eigenvalues �1 and �2, respectively. Since we are only concerned with the gradient of the
Fourier component, the ‘curl-free’ modes u= x2, we need only concern ourselves with this
second eigenvalue and eigenvector. For the exact projection, �1= 1 and �2 = 0 and there is no
issue of a remnant divergence after the projection. However, for the approximate projection,
�2 is non-zero.
The approximate projection has the eigenvalues �1= 1 and �2 = 1− (�2x + �2y)=(�L�M ) with

the same eigenvectors as the exact projection. Its approximate nature is re�ected in the fact
that �2 di�ers from zero. In Figure 1, �2 is plotted for Q1Q1 and P1P1, with and without
mass lumping. Here we see that �2 is bounded between 0 and 1 for all four variants. Note that
this eigenvalue is equal to one for several modes corresponding to 2�x; 2�y, and 2�x�y
modes. Fortunately, x2 is zero for these modes and nearly zero for modes nearing these length
scales as shown in Figure 2 for both P1P1 and Q1Q1. The tilt associated with P1P1 is an
artifact of the orientation of the triangles which is shown in Figure 3. Hence for any well
resolved modes the divergence is strongly controlled and modes that have a weak damping fac-
tor are barely supported by the gradient operator. Although not explored in this manuscript,
this analysis is directly extendible to three dimensions, where the relevant eigenvalue and
eigenvector are respectively, �3 = 1 − (�2x + �2y + �2z )=(�L�M ) and x3 = [�x; �y; �z]. In the next
section, we illustrate these properties in a periodic case where these analytic results are directly
applicable.

2.3. Comparison with other projections

Before presenting the numerical results, we explore the relationship of Q1Q1 to other approx-
imate projections. Gresho et al. [8] analysed an explicit form of this method that uses both
lumped mass and �=0. There they observed a stable integration using only a single projection
of the acceleration. Although Gresho et al. were successful in simulating steady-state �ow
over a wing, ABC with a similar method observed noise in the velocity �eld during long
time integrations. Another method very similar to this one is given by Codina [9] and utilizes
the same form of the mass matrix, but achieves stabilization by adding an additional factor
to the pressure gradient term. Guermond presents a summary of several projection methods
with error analysis techniques for evaluating them [10].
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Figure 1. �2 for lumped mass, consistent mass, P1P1 and Q1Q1, contours start from 0.0 (white) and
go to 1.0 (black) with 0.1 increments. 256 points were used in both x and y.

The approximate projection method most similar to our Q1Q1 is the well known PISO
method of Issa [11]. In that method, one seeks to minimize the di�erence of the numerical
solution from the desired relationships

un+1= un +�tM−1
l (Hn+1 −Gpn+1)

DGpn+1=DHn+1 (31)

where Hn+1 =−(K + N (un))(un+1). PISO is a �nite di�erence approach that is designed to
approximate a simultaneous equation solver of both velocity and pressure and although this
is only �rst order in time, higher order temporal accuracy would complicate its use as a
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Figure 2. Norm of x2=max(x2) for P1P1 and Q1Q1. Contours start from 0.0 (white) and
go to 1.0 (black) with 0.1 increments.

steady-state integration method. Our atmospheric applications are inherently time accurate and
the higher-order temporal corrections are essential. Ignoring these di�erences, our method can
be made to have a similar form as PISO while retaining second order in space and time
accuracy by using the following two additional steps. Instead of using Hn+1=2 in the second
projection, one can use the updated forcing as Hn+1=2

new =−(K+N (un+1=2))((un+un+1)=2). Then
one can solve for the pressure to the same tolerance as in the �rst projection and apply the
gradient of this pressure to obtain the �nal velocities. In the results section, we will compare
our method with and without these extra steps to the base method to establish its relationship
with PISO.
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Figure 3. Orientation and nodal numbering of Q1Q1 (left) and P1P1 (right) for the two analytic tests.

Our method is very similar, and in part motivated by the P5 approximate projection pre-
sented in ABC. However, there are important di�erences arising from its �nite element dis-
cretization, a full mass matrix, and its co-located variables. The ABC implementation used a
structured quadrilateral mesh with considerable computational complexity due to the use of
several mesh staggerings. This algorithm extends their theory to unstructured triangular=quadri-
lateral in 2D and tetrahedral=hexahedral meshes in 3D. This method is very useful for simula-
tions involving complex geometry and unstructured meshes in that it only requires piecewise
linear �nite elements with all the variables co-located at nodal positions.

3. RESULTS

This section provides numerical examples which highlight di�erent aspects of this method’s
performance. We use a periodic test with an analytic solution for the purpose of testing the
order of convergence and the analytic theory of the previous section. It is also important
to illustrate the utility of this method in real world �ows. For this purpose, we compare
our method with laboratory results for �ow over a cubical obstacle and dispersion from a
continuous point source in the obstacle’s wake.

3.1. Analytic tests with sines

This test case was performed using both Q1Q1 and P1P1 with elements and nodes de�ned on
the domain shown in Figure 3. Note that the triangular elements of P1P1 have many di�erent
possible orientations and we have chosen to orient the triangles in a repeating pattern. Although
it has a directional bias, this pattern results in a uniform mass and transport operators for each
computational node that is amenable to analysis. For this P1P1 test case, each basis and test
function have a hexagonal support. If one alternates the orientation, the basis functions have
alternating diamond and square supports.
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APPROXIMATE PROJECTION METHOD FOR INCOMPRESSIBLE FLOW 1313

This test compares the numerical solutions from P1P1 and Q1Q1 to an exact solution to
the incompressible Equations (1) and (2) with a constant viscosity on the periodic domain
(0; 2�)× (0; 2�). The exact solution is given by

uex(x; y; t) = 1− 2e−�t cos(x − t) sin(y − t) (32)

vex(x; y; t) = 1 + 2e−�t sin(x − t) cos(y − t) (33)

pex(x; y; t) =−e−2�t(cos(2(x − t)) + cos(2(y − t))) (34)

where �=2K . We performed this comparison with di�erent resolutions ranging from 16 to
256 elements in each direction. Since for this test we are only analysing the error between
the numerical and the exact solutions after a �xed time t, we are not concerned with trying to
di�erentiate the spatial from the temporal error. The timestep is decreased by half with each
doubling in resolution in order to keep the relative proportion of these errors the same. This
is equivalent to keeping the initial maximum Courant number �xed (a value of 1.0 was used).
The viscosity, K was �xed to keep the Reynold’s number (Re = 6�=K) at a value of 1000.
By plotting error norms for both u and p, and the divergence on log–log plots with respect
to resolution, one can obtain estimates of the order of accuracy of each numerical variant.
In the following plots, we compare Q1Q1 versus P1P1 with and without consistent mass and
with and without the velocity predictor in the advective terms. A sequence of runs using the
traditional Q1Q0 approach with no velocity predictor and lumped mass is provided as well.
This sequence is useful in determining the relative accuracy of the approximate projections.
The results for the L1 error norm of u and p at t=� are quite striking. For the cases

without the velocity predictor, the results are �rst order and the di�erent methods eventually
converge to the same errors as resolution is increased as seen in Figures 4 and 5. Only in the
case where the predictor is used do we see the expected increase in accuracy due to consistent
mass seen in simpler tests with a known velocity �eld and an advected scalar. Surprisingly,
P1P1 performs remarkably well against the Q1Q1 variant with the same combination of mass
consistency and velocity predictor. The lumped mass cases actually show P1P1 performing
better than Q1Q1. The Q1Q0 results for lumped mass and no predictor are equivalent to Q1Q1
in accuracy with no predictor and lumped mass. This indicates that little is lost by switching
from an exact to an approximate projection. It is worthwhile to mention the relative cost of
a method with and without the velocity predictor. The predictor requires its own subtimestep
with its own Poisson solve, e�ectively doubling the computational cost of a timestep. For this
test case, the 32 point simulation with the predictor is equivalent in accuracy to the 256 point
simulation without it. This results in a factor of 256 times more work without the predictor
for this level of accuracy, due to the factor of 8 increase in cost with a doubling in resolution.
This is a conservative estimate, since numerical linear algebra often does not scale linearly
with increases in problem size.
The divergence results in Figure 6 re�ect the eigenstructure in the previous theory section.

In this case, the largest e�ect on the size of the numerical divergence is the choice of consistent
mass which causes the greatest decrease in the size of the numerical divergence, a re�ection
of the data presented in Figure 1. The next largest e�ect is the choice of velocity predictor,
and the choice of Q1Q1 versus P1P1 seemed to be the smallest e�ect. Note that the decrease
in divergence for all variants is better than second order. This re�ects the case that the low
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Figure 4. Velocity error for the translating vortex test, for several variations of Q1Q0, P1P1, and Q1Q1.

wavenumbers of the analytic solution are more and more resolved as the resolution is increased
which decreases the value of �2 resulting in a faster than second-order convergence in the
velocity divergence.
The comparison of this method with the PISO varient from the previous section is presented

in Figures 7 and 8 for the error in the velocities and the numerical divergence, respectively.
All combinations of (1) updating the velocity forcing and then (2) applying the gradient
of the second gradient to the velocities were performed for the case of the method with
predictor, consistent mass and Q1Q1. For the numerical divergence, it appears that, since step
two is a projection of a forcing and the projection is approximate, applying this gradient to
the velocities degrades the solution. It appears that step one had very little e�ect on this
quantity. For the velocity error, it is a di�erent story. There the �ndings are reversed and step
two is more important in controlling the error. Step one appears to have a minor e�ect in
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Figure 5. Pressure error for the translating vortex test, for several variations of Q1Q0, P1P1, and Q1Q1.

reducing the error when step two is also applied. Note that in this case the second projection
was solved to 1:e − 8 as was the �rst projection for all the variants. As this increased the
amount of work in the second projection by a factor of four, the use of step two could be
problematic in situations where computational resources are limited. For this test case, step
one alone resulted in approximately a 40% increase in accuracy at only the expense of another
matrix–vector multiply.

3.2. Comparison with laboratory experiment

We are using Q1Q1 and Q1Q0 as the basis for a numerical model that predicts air�ow
and pollutant dispersal on building-scales from a single building to multi-building complexes;
see Reference [12]. The prediction of atmospheric �ow and pollutant dispersion in an urban
area is di�cult due to the presence of buildings and numerous other obstacles. Individual
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Figure 6. Numerical divergence for Q1Q1 and P1P1 for the translating vortex test. Q1Q0 not shown
due to its numerical value of machine roundo�.

buildings exhibit signi�cant geometrical variations with building wakes from adjacent buildings
interfering with and altering the trajectory of street level plumes. The simple con�guration of
�ow around a cubical obstacle is a fundamental test case for establishing the credibility of the
model for use in the assessment of �ow and dispersion of hazardous agents around buildings.
This paper uses two studies to evaluate the accuracy of our model for �ow and dis-

persion. The �delity of the model with respect to the �ow �eld is judged by comparison
with results from a laboratory experiment by Martinuzzi and Tropea [13]. There the non-
dimensional velocity, U=U0, where U is the stream-wise horizontal velocity �eld and U0 is
the mean in�ow velocity, provides a useful metric for comparing the winds responsible for
dispersion. The degree of variability in the �ow can be judged via the normalized turbulent
kinetic energy k=U 2

0 . Turbulent kinetic energy (TKE) provides an estimate for the turbu-
lent variations that occur in this �ow as it is computed as a variance of actual velocities

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1303–1325



APPROXIMATE PROJECTION METHOD FOR INCOMPRESSIBLE FLOW 1317

16 32 64 128
10

 -4

10
 -3

10
 -2

10
 -1

nx

u e
rr

or

Figure 7. Velocity error for the translating vortex test for comparison with the PISO method.
The dashed line represents updated velocities and forcings in a manner similar to PISO.
The solid line updates only the forcing. The dotted line updates only the velocities. The

dash-dot updates neither the forcing nor the velocities.

from their time-averaged mean value. With respect to dispersion, which for release assess-
ment purposes is more important than the actual �ow �eld itself, we use a study by Zhang
et al. [14] who released a ground level tracer 0:25H downstream from the cube where H is
the height of the cube. The experiment showed that the tracer is entrained into the recircu-
lating eddy behind the cube and dispersed downstream. An important feature of the disper-
sion pattern is that it quickly becomes much wider than the cube width within a few block
heights downstream.
The simplest non-trivial LES turbulence model and the one used here is the Smagorinsky

subgrid model [15, 16]. This model uses a simple down-gradient mixing-length relationship
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Figure 8. Numerical divergence for the translating vortex test for comparison with the
PISO method. Line types are as in Figure 7.

between velocity and scalar gradients and the subgrid stress and �uxes

u′iu′j =−KmSij (35)

u′j c′ =−Kh
@c
@xj

(36)

The eddy viscosity is directly found from the equilibrium assumption that the subgrid turbu-
lent kinetic energy is locally in equilibrium between locally generated shear production and
dissipation and has the algebraic form:

Km=
c2s l

2

2
SijSij (37)
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Figure 9. Flow domain and location of observational pro�les. The thick dashed lines repre-
sent where velocity is compared, the thin dashed lines TKE, and the combination lines where
both are. Dispersion of an advected scalar is compared at the thick solid lines against the

experimental results of Zhang and Snyder.

where Sij is the strain tensor. There are more complicated LES turbulence models such as the
one by Deardor� [17], where this assumption is relaxed and subgrid turbulent kinetic energy
is transported with the simulated �ow. Piomelli [18] has also created a model which allows
upscale transport of this quantity.
The computational domain was designed to be wide enough to contain the dispersion pattern

observed by Zhang et al. [14] while keeping the resolution high enough to provide good
comparison with the �ow data of Martinuzzi and Tropea. The fundamental length scale in
this investigation is the height of the cube H which we take to be 1 m. The computational
domain is a rectangular channel of height 2H , width 7H and length 10H . The origin is situated
at the center of the cube, with the in�ow at x=−3:5H . Over the entire in�ow, the in�ow
velocity was a constant 0:6m=s. This agrees with the in�ow pro�le of Zhang et al. where all
of the turbulence was generated by a cube mounted to a �at plate which was towed in a water
tunnel. The �ow domain is illustrated in Figure 9. This �gure displays the cube and several
vertical and horizontal lines where pro�les from both the experiments of Zhang and Snyder
and Martinuzzi and Tropea are presented. The simulations are compared against the mean
velocity and TKE pro�les of Martinuzzi and Tropea. The thick dashed lines represent where
velocity is compared, the thin dashed lines TKE, and the combination lines where both are.
Dispersion of an advected scalar is compared at the thick solid lines against the experimental
results of Zhang and Snyder.
Figures 10 and 11 compare the time mean streamwise velocity and turbulent kinetic en-

ergy at the symmetry plane with the experimental results of Martinuzzi and Tropea [13]. The
main features of all �ow �elds are similar. They include the separation zones in front of
the cube, on the roof and the two sides, a primary recirculation zone in the wake, and a
pair of counter-rotating vortices on the horizontal plane (not shown). The recirculation length
of the Q1Q0 simulation was 1.55 and that of Q1Q1 was 1.5. This agrees well with the
value of 1.68 measured by Martinuzzi and Tropea. These lengths compare more favourably
than that predicted by the simpler, but widely used standard k–� turbulence model results
that tend to be around 2.85 [19]. The features of both simulations agree well with the ex-
perimental data with respect to the velocities in Figure 10. The small discrepancies at the
top of the domain are generated by the free slip boundary conditions used in the numerical
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Figure 10. Mean streamwise velocity at four locations along the symmetry plane. The dots are from
Martinuzzi, the solid line from Q1Q1 and the dashed from Q1Q0.

simulations to approximate the higher top boundary location of the Zhang et al. [14] dispersion
experiment.
The results of Zhang et al. [14] are used to evaluate the accuracy of concentration patterns

from the model. These results were created with a tow tank in which a cube mounted to a
plate was moved at 0:6 m=s through a water tank 18 m long. The cube was 0:1 m high and
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Figure 11. Total turbulent kinetic energy at three locations along the symmetry plane. The dots are
from Martinuzzi, the solid line from Q1Q1 and the dashed from Q1Q0.

the tank was 1m wide by 1m. All of the turbulence in the experiment was generated by the
passage of the cube. The dispersion in their experiments is generated by a small ground-level
continuous source 0:25H centered behind the rear of the cube. The solid thick lines of Figure 9
are the locations where the concentrations downstream from the cube have been measured.
Although both simulations used much smaller domains than this experiment, it appears that
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Figure 12. Comparison of tracer pro�les with experiment. The experimental range is shown as a gray
area, the Q1Q0 LES result as a dashed line and the solid line is the Q1Q1 result. The top plot is for
the pro�le along the �oor of the out�ow, the middle plot is the pro�le along the �oor of the symmetry

plane, and the bottom plot shows a vertical pro�le in the symmetry plane at the out�ow.

capturing the vortex shedding behind the cube is the most important factor in determining the
concentration pattern in the wake of the building.
In Figure 12, we show the pro�le comparison along the thick solid lines of Figure 9. We

see good agreement for both numerical methods. The top plot shows the simulations both
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Figure 13. Instantaneous tracer snapshots on the ground surface. The top
contour plot shows Q1Q0 and the bottom Q1Q1.

capturing the horizontal dispersion at the out�ow found in the observations. The middle plot
shows the simulations agreeing with experiment along the bottom of the symmetry plane. The
bottom plot shows a vertical concentration pro�le centered in the middle of the out�ow plane.
Here it appears that Q1Q1 is more accurately capturing the observed dispersion. The Q1Q1
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simulation is able to spread more of the tracer in the vertical and horizontal to get better
agreement with experiment, whereas the Q1Q0 simulation predicted a plume that was more
concentrated at the centerline directly behind the cube. A possible reason for this is seen in
overhead snapshots looking down at the surface tracer concentrations as shown in Figure 13,
where we compare Q1Q0 and Q1Q1 plumes. It appears that the Q1Q1 approach tends to
have more active vortex shedding than the Q1Q0 approach which could account for its wider
dispersion pattern.

4. CONCLUSION

We have presented comparisons of Q1Q1, P1P1 and Q1Q0 for two numerical examples.
In these comparisons, we have shown the co-located method to be equivalent in accuracy
to the staggered Q1Q0 approach without ‘checkerboarding’ or other artifacts commonly ob-
served with such non-staggered methods. The major utility of this method has not yet been
discussed, but becomes apparent when we discuss the engineering utility of this co-located
method. Its construction involves less complexity than Q1Q0 as the Laplacian matrix L is
the constant viscosity di�usion matrix K and hence the conversion of a Q1Q0 method to
Q1Q1 is straightforward. For unstructured models, only one set of connectivity is required
which often eliminates the need to store multiple matrices. For the case of P1P1 on trian-
gles and tetrahedrons, one can completely eliminate the need to store the matrices as they
can be integrated exactly. For the Q1Q1 simulation of the cube, only one matrix was re-
quired as the same storage was used in the solution process of Equations (11), (12) and (14).
Finally, L is a standard �nite element Laplacian (the 5 point Laplacian for P1P1) and is much
more amenable to iterative solution techniques such as algebraic multigrid which can often
be rendered virtually unusable by ill-conditioning in the case of GTM−1

L G. We are currently
performing parameter studies with multiple linear algebra techniques to determine how to
optimally take advantage of the better conditioning of L with respect to GTM−1

L G.
This method is of practical utility to mesh re�nement techniques as well. Many structured

adaptive mesh re�nement techniques (often denoted by AMR) su�er from ad-hoc methods of
transferring coarse data to �ne levels of re�nement. By collocating all of the variables, estab-
lished techniques such as �nite volume-element method (FVE) and fast adaptive composite
(FAC) introduced by McCormick [7] can be applied to all of the variables in complex systems
of equations. Coarse–�ne interfaces can for example make use of the ability of this method
to use both triangles and quadrilaterals for instance to rigorously constrain the discretization
at these junctures. By putting them on a solid theoretical foundation, this could have dramatic
improvements in the �delity and performance of such models.
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